A Fast Scene Constructing Method for 3D Power Big Data Visualization
نویسندگان
چکیده
The process of smart gird operation and management produces big volume of isomeric and polymorphic data, known as power big data. Since the data has a property of panoramic, the combination of data visualization and 3D scene is an efficient solution to comprehensible analysis and demonstration, while the highly detailed 3D models challenge rendering performance and the speed of human-machine communication. Therefore, this paper proposes a fast scene constructing method aiming at scenes that are composed of electrical equipment models. This method is designed based on a weighting function, which takes several factors that contribute to the complexity of a model into account. First, we select several specific factors of an edge. These factors are special because their values affect the surface of electrical equipment 3D models a lot, while affect common 3D models not obviously. A proper scenario is designed to quantize these factors and their corresponding weighting parameter. Second, in order to ensure the weighted contribution of each factor is balanced, we adjust the weighting parameter of each factor by restricting the range of the parameter. At last, we use two stacks for one model to record the edges that are to be optimized and have been optimized in sequence, sorted by the contribution value. Experiment shows that method in this paper meets the demand of power big data visualized analysis system by finely retaining figuration and high rendering performance. i
منابع مشابه
Fast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard
three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملTechnical Calculation, Modelling and Visualization of 3d Magnetic Field
In distribution points of high power net large current can flow. Magnetic field generated by these currents produces big forces between conductors that lead to other unwanted effects. The realistic simulation of magnetic field can lead to better understanding of these effects. Therefore we need both the universal mean and simple method for such simulation. MATLAB languageis the best choice beca...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملPLT Scheme Scene Graph: An Application of Mixin for Construction of Graphics Scene Data Structure
This paper presents a high level API for constructing scene graph structure in PLT Scheme. That is built upon the SGL, the OpenGL binding in scheme and supplies the basic primitive three dimensional objects. We add basic graphics operations for visualization and interactive manipulation of the objects in the scene or the whole viewing operations. The focus of this paper is to show the structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCM
دوره 10 شماره
صفحات -
تاریخ انتشار 2015